
A Test Suite for PVM

Henri Casanova (casanova@cs.utk.edu)

Jack Dongarra (dongarra@cs.utk.edu)

Philip J. Mucci (mucci@cs.utk.edu)

March, 1995

Abstract

Although PVM is well established in the �eld of distributed computing,

the need has been shown for a standard set of tests to give its users further

con�dence in the correctness of their installation. This report introduces

pvm test and its X interface pvm test gui. pvm test was designed to

exercise some of PVM's more important functions and to provide some

primitive measures of it's performance.

1

1 Notice

PVM 3.3: Parallel Virtual Machine System 3.3

University of Tennessee, Knoxville TN.

Oak Ridge National Laboratory, Oak Ridge TN.

Emory University, Atlanta GA.

Authors: A. L. Beguelin, J. J. Dongarra, G. A. Geist,

W. C. Jiang, R. J. Manchek, B. K. Moore, and V. S. Sunderam

(C) 1992 All Rights Reserved

Permission to use, copy, modify, and distribute this software and its docu-

mentation for any purpose and without fee is hereby granted provided that the

above copyright notice appear in all copies and that both the copyright notice

and this permission notice appear in supporting documentation.

Neither the institutions Emory University, Oak Ridge National and The Univer-

sity of Tennessee nor the authors make any representations about the suitability

of this software for any purpose. This software is provided \as is" without ex-

press or implied warranty.

PVM 3.3 was funded in part by the U.S. Department of Energy, the National

Science Foundation and the State of Tennessee.

2

2 Installation

� Verify that PVM version 3.3 or higher including the group server is in-

stalled correctly on every machine in the host pool. Also, make sure that

the environment variable PVM ROOT is set in the user's login scripts.

� Install Tcl/Tk. Version 3.x of Tk is expected. Under Tk 4.0, the GUI will

not function properly without modi�cations!

� Build the pvm test distribution. Please see Makefile.notes for the ar-

guments to given to make.

3 The tester

The test suite consists of two parts, the test engine itself and a GUI.

3.1 The tester engine

The tester engine itself is the pvm test executable, and takes the name of a

�le as its �rst argument. This �le speci�es the con�guration for the test run.

See the �le sample.input in the distribution for a sample �le. To run the test

engine, after creating a con�guration �le, one must :

1. Run pvm on the master host

2. Run the pvm test executable on this host

We will here describe briey how to build a con�guration �le for the test

engine.

3.1.1 General features in the con�guration �le

From now, we will speak of a line as a line in the con�guration �le. First, we

must say that each line beginning with a # is a comment line. We strongly

suggest the use of comments when building a con�guration �le, because of its

somewhat cryptic format.

The �rst thing to do is to tell the test engine which are the hosts used in

the con�guration. This is done by lines like this one :

config :rudolph

which means that the host rudolph will be in the con�guration. It is not

required to put the master host in the con�guration �le.

Once given a list of hosts, we can specify where the output of the test engine

is to be redirected. We can choose to have it sent to the stdout :

outfile :stdout

3

or to a speci�c �le :

outfile :whatever

Then, we can specify if we want the test engine to try various combinations

of hosts or not with a line :

all_combinations :1

or

all_combinations :0

See 5 for more explanation about this feature.

3.1.2 Test selection

Of course, the PVM test suite allows the user to specify which tests he wants

to run on his con�guration. The execution of all the tests, especially on an

heterogeneous network and with the all combination option set, may take a

pretty long time.

One can decide for each test whether it is to be performed or not. In the

con�guration �le, a line :

[]test23

means that the test #23 will not be performed, and a line

[x]test23

means that this test will be performed. If there is no line concerning a particular

test, the takes won't be executed, by default.

Besides, some options allow the user to select a whole class of tests. If

the option for a class of test is set to 0, then the test engine will examine the

individual selection for all tests of this class (as above). If this option is set

to 1, then all the tests of the class will be executed, whatever their individual

settings are.

The di�erent classes of tests are the following :

� all tests : All tests of the test suite

� all messaging : tests #48 to #107

� all routine : tests #1 to #44 and test #47

� all perf : tests #45 and #46

� all head nodata : tests #48 to #53

� all head data : tests #54 to #61

4

� all triangle nodata : tests #62 to #69

� all triangle data : tests #70 to #77

� all funnel nodata : tests #78 to #91

� all funnel data : tests #92 to #107

Then for instance, if there are two lines :

all_triangle_data :1

[]test72

then the test #72 will be executed, and so will be the tests #70 to #77. And

if the lines are :

all_triangle_data :0

[x]test72

then, the test #72 will also be executed and perhaps some of the tests #70 to

#77.

Notice that if there is no line concerning some class of tests, the the setting

for this class is taken to be 0.

3.1.3 More options

There are some other options directly related to some particular tests. These

options will be described in section 4. A GUI has been designed which automates

the creation of a con�guration �le.

3.2 The interface

Youmust be running X and have the Tcl/Tk toolkit installed to use pvm test gui.

Tcl/Tk are available from ftp.cs.berkeley.edu in the directory /pub/tcl.

The main window consists of four panels and a menu bar. The leftmost

panel contains ten check-buttons and two regular buttons. The check-buttons

indicate which common subsets of the one-hundred and seven ests, the user

wishes to perform. The button on the bottom of the panel brings up a listbox

in which can select a single test from the complete list. The button on top is

provided to start the selected tests.

In the top right panel are sliders for setting the parameters for the three

types of messaging tests. (funnelling, head-to-head and triangle). These sliders

can be \dragged" via the LMB. For more precise control, the values can be

increased or decreased by one unit using the right and middle mouse buttons.

The slider called 'Number of processes', concerns only the funnelling tests.

The next panel comtains one check-button, \All Combination". When checked,

the test engine will try \all" the architecture combinations for all the selected

tests (see 5 for more details).

5

The next panel down also refers to these messaging tests. These check

buttons allow the user to select timings to be displayed upon completion of

each test. \Total time" will display the total amount of time that the master

process took to send all of its messages and \Average Time" will display the

average time per message.

The last panel on the right side contains more sliders for setting the param-

eters for the bandwidth test. A message which is \Start" bytes long is sent and

then increased by \Increment" bytes and sent again. This continues until the

length \End" is reached. Slider control is identical to that in the upper right

panel (LMB for rapid sliding, MMB and RMB for precise sliding).

On the bottom of the window there is a text widget containing the current

PVM host �le. Due to constraints imposed by the test engine, any options must

be speci�ed on the same line as the host to which it is referring. If no �lename

is given on the command line, pvm test gui will open up a temporary host �le

and �ll it with the name of the host on which it is executing.

At the top of the window, exists a menu-bar and a small help box. The help

box provides a small description about what the user is pointing to with the

pointing device. The Menu options consist of standard �le operations that can

be performed with reference to the host �le in the text box described above.

The second menu allows the user to generate and save a con�guration �le for

use when the GUI is inaccessible.

When the user has �nished selecting tests and setting options, the \Run

selection" button in the upper right hand corner should be clicked upon. The

host�le widget at the bottom will then be replaced by a status bar and a but-

ton. The status bar displays the most recent write of pvm test to standard

output. The \ABORT" button allows the user to terminate pvm test prema-

turely. When the tests complete or are aborted, these widgets change into two

buttons. These buttons give the user the option of displaying and saving the re-

sults or to discard them and return to the test selection phase. The user should

note that any results are not recoverable if \done" is chosen. If the user chooses

to view or save the results, a new window will open. This window contains

three buttons and two text boxes. The buttons allow the user to dismiss the

window entirely or save the results to a �le. The rightmost text box contains

a test number and a value corresponding to the success of failure of that test.

If the user clicks on an entry, the leftmost box will display the results of the

corresponding test. This includes a description of the test, optional timings

and possible reasons for failure. There is also an entry called \Report Header"

which will display the miscelleanous infromation provided by the test engine at

the beginning of its execution (and possible failures).

6

4 Description of the tests

There are currently 107 tests contained in the pvm test program. Tests numbers

1 though 47 are intended to exercise the PVM library and to test the stability

of the daemon. In the short description of each test, the word incorrect means

that this PVM functionnality is tested with incorrect parameters, or in incorrect

situations, so that its behaviour in failure cases can be checked. Most of the

time, there is a single test for each PVM function testing both the correct and

the incorrect case. See 4.1 for more details.

Tests 45 and 46 perform latency and bandwidth measurements.

Tests 48 through 107 perform a benchmark of PVM's message passing func-

tions using various con�gurations of hosts and options to PVM. See 4.3 for more

details.

7

Test number Description

test1 pvm mstat() correct

test2 pvm mstat() incorrect

test3 pvm addhosts() correct

test4 pvm addhosts() incorrect

test5 pvm delhosts() correct

test6 pvm delhosts() incorrect

test7 Race pvm addhosts()-pvm config()

test8 Race pvm delhosts()-pvm config()

test9 pvm hostsync()

test10 pvm pstat() correct

test11 pvm pstat() incorrect

test12 pvm spawn() sequential

test13 pvm spawn() simultaneous

test14 pvm kill() correct

test15 pvm kill() incorrect

test16 pvm tidtohost()

test17 pvm parent()

test18 pvm sendsig()

test19 pvm tasks()

test20 pvm exit()

test21 Are several group server started ?

test22 pvm joingroup() incorrect

test23 pvm lvgroup() incorrect

test24 pvm joingroup(),pvm lvgroup(),pvm gsize()

test25 Group completion

test26 pvm getinst(),pvm gettid()

test27 pvm initsend(),pvm getsbuf(),pvm freebuf()

test28 pvm pkxxx(),pvm pkxxx()

test29 pvm getrbuf()

test30 pvm bufinfo()

test31 pvm mytid()

test32 pvm mkbuf()

test33 pvm send()-pvm recv() and pvm psend()-pvm precv() coherency

test34 pvm setsbuf()

test35 pvm setrbuf()

test36 pvm setxbuf() incorrect

test37 pvm bcast()

test38 pvm barrier()

test39 pvm reduce()

test40 pvm gather()

test41 pvm scatter()

test42 pvm mcast()

test43 pvm trecv()

test44 pvm nrecv()

test45 Latency-Bandwidth pvm send()-pvm recv()

test46 Latency-Bandwidth pvm psend()-pvm precv()

test47 pvm notify()

8

TEST PATTERN CODING ROUTING ROUTINES CONTENT

test48 : head-head PvmDataDefault daemon routing send-recv empty

test49 : head-head PvmDataRaw daemon routing send-recv empty

test50 : head-head PvmDataInPlace daemon routing send-recv empty

test51 : head-head PvmDataDefault direct routing send-recv empty

test52 : head-head PvmDataRaw direct routing send-recv empty

test53 : head-head PvmDataInPlace direct routing send-recv empty

test54 : head-head - daemon routing psend-precv empty

test55 : head-head - direct routing psend-precv empty

test56 : head-head PvmDataDefault daemon routing send-recv data

test57 : head-head PvmDataRaw daemon routing send-recv data

test58 : head-head PvmDataInPlace daemon routing send-recv data

test59 : head-head PvmDataDefault direct routing send-recv data

test60 : head-head PvmDataRaw direct routing send-recv data

test61 : head-head PvmDataInPlace direct routing send-recv data

test62 : head-head - daemon routing psend-precv data

test63 : head-head - direct routing psend-precv data

test64 : triangle PvmDataDefault daemon routing send-recv empty

test65 : triangle PvmDataRaw daemon routing send-recv empty

test66 : triangle PvmDataInPlace daemon routing send-recv empty

test67 : triangle PvmDataDefault direct routing send-recv empty

test68 : triangle PvmDataRaw direct routing send-recv empty

test69 : triangle PvmDataInPlace direct routing send-recv empty

test70 : triangle - daemon routing psend-precv empty

test71 : triangle - direct routing psend-precv empty

test72 : triangle PvmDataDefault daemon routing send-recv data

test73 : triangle PvmDataRaw daemon routing send-recv data

test74 : triangle PvmDataInPlace daemon routing send-recv data

test75 : triangle PvmDataDefault direct routing send-recv data

test76 : triangle PvmDataRaw direct routing send-recv data

test77 : triangle PvmDataInPlace direct routing send-recv data

test78 : triangle - daemon routing psend-precv data

test79 : triangle - direct routing psend-precv data

9

TEST PATTERN CODING ROUTING ROUTINES CONTENT

test80 : funneling PvmDataDefault daemon routing send-recv empty

test81 : funneling PvmDataRaw daemon routing send-recv empty

test82 : funneling PvmDataInPlace daemon routing send-recv empty

test83 : funneling PvmDataDefault direct routing send-recv empty

test84 : funneling PvmDataRaw direct routing send-recv empty

test85 : funneling PvmDataInPlace direct routing send-recv empty

test86 : funneling PvmDataDefault daemon routing mcast-recv empty

test87 : funneling PvmDataRaw daemon routing mcast-recv empty

test88 : funneling PvmDataInPlace daemon routing mcast-recv empty

test89 : funneling PvmDataDefault direct routing mcast-recv empty

test90 : funneling PvmDataRaw direct routing mcast-recv empty

test91 : funneling PvmDataInPlace direct routing mcast-recv empty

test92 : funneling - daemon routing psend-precv empty

test93 : funneling - direct routing psend-precv empty

test94 : funneling PvmDataDefault daemon routing send-recv data

test95 : funneling PvmDataRaw daemon routing send-recv data

test96 : funneling PvmDataInPlace daemon routing send-recv data

test97 : funneling PvmDataDefault direct routing send-recv data

test98 : funneling PvmDataRaw direct routing send-recv data

test99 : funneling PvmDataInPlace direct routing send-recv data

test100 : funneling PvmDataDefault daemon routing mcast-recv data

test101: funneling PvmDataRaw daemon routing mcast-recv data

test102: funneling PvmDataInPlace daemon routing mcast-recv data

test103: funneling PvmDataDefault direct routing mcast-recv data

test104: funneling PvmDataRaw direct routing mcast-recv data

test105: funneling PvmDataInPlace direct routing mcast-recv data

test106: funneling - daemon routing psend-precv data

test107: funneling - direct routing psend-precv data

4.1 Tests #1 through #44 and #47

These tests are general-purpose and cover the basic functionality of PVM. Notice

that the tests #7 and #8 may indicate a failure without implying a PVM fault.

In fact, such a failure means only that the host con�guration is not fast enough

to add or delete hosts.

4.2 Tests #45 and #46

These two tests do some Latency-Bandwidth measurement between the hosts of

the con�guration. These measurements are done according to the parameters

set by the user for these two tests. However, the default parameters are :

� minimum length : 100

10

� maximum length : 1000

� progression : 100

The �le sample.input shows how to set these parameters. In this �le they

are respectively set to 200, 2000 and 200.

These two tests generate an output. If the output �le of the test engine is

a �le, then their output goes directly into this �le, otherwise they go in two

seperate �les, /tmp/output 45.dat.pid and /tmp/output 46.dat.pid, where

pid is the process-id of the test engine.

4.3 Tests #48 through #107

Each test in this section performs only one of three di�erent patterns of com-

munication:

� Funneling tests consist of many slave processes, each sending messages

back to the master.

� Head-to-head tests consist of the master and only one slave, both sending

messages to the other.

� Triangle tests consist of a master and two slave processes that communi-

cate in a circular pattern.

These tests have di�erent sets of the following options:

1. Use of XDR encoding, No encoding or Data in place

2. Use of direct or indirect routing

3. Use of pvm mcast(), pvm send() or pvm psend()

4. Use of Not-empty or empty message

Besides, the default values for the parameters are :

� Number of messages : 10

� Length of messages : 100

� Number of processes : 5

In the �le sample.input theses parameters are set to 3, 300 and 3.

The user can also get some timing results with these tests. Two results are

available :

� Total time : Time to send and receive all the messages

� Average time : Average round-trip time per message

In the �le sample.input these two ags are set to 1, which means that

the total time and the average will both be printed when theses tests will be

executed.

11

5 Various architecture combinations

This option is only interesting in the case of an heterogeneous network,. Each

test requires some number of hosts, this implies that sometimes the test engine

has to make a choice and pick some hosts in the host con�guration. Basically,

when a choice has to be made, if the option is turned o�, the test engine picks

the �rst hosts in the con�guration �le. If the option is turned on, it runs the

test for some di�erent con�gurations.

We could have chosen to try all the architecture combinations, but this

would have been too much, leading to prohibitive execution times. The policy

we have chosen is the following. The test engine runs a subset of the set of all

combinations, provided that each pair of architecture is at least tried once in this

subset. For instance, let's assume that we have 5 di�erent architectures in our

host con�guration, let's say A, B, C, D and E. And suppose that the current

test requires 3 hosts. Then the test engine will try the following combinations :

ABC,ACD,ADE,BCD,BDE and CDE. This way, every pair of architecture is

tried and the number of tries is only polynomial in the number of architectures

and the number of hosts required.

All the tests requiring either one single host (the master host) or a num-

ber of hosts greater or equal to the number of di�erent architectures in the

con�guration are not a�ected by this option.

The tester allows the user to turn this option on or o� (see 3.1).

6 Functions not tested

Not all the PVM function are tested by the pvm test program. The following

PVM functions are used without being explicitly tested.

pvm_halt()

pvm_setopt()

The following PVM functions are not used at all :

pvm_catchout()

pvm_perror()

pvm_reg_hoster()

pvm_reg_rm()

pvm_reg_tasker()

7 MPPs

The PVM test suite has been installed and successfully run on :

� Connection Machine 5.

12

� Intel Paragon

� IBM SP2

There are three make�les, Makefile.cm5, Makefile.pgon and Makefile.SP2,

which allow you to compile and run the test suite on these three machines.

We have to be aware of something on this kind of MPP's. The master

process of each test will run on the host and each slave program will run on

one node. Thus, the tests #45 and #46 won't give the latency and bandwidth

results for a node-node communication, but for a host-node communication. For

an e�ective performance measurement, the user is advised to use the nntime

program provided with PVM. Of course, the test engine tests the node-to-node

copmmunication, in the triangle tests.

8 Customizing the test suite

It is rather easy to add new tests to the PVM test suite. Here follows a descrip-

tion, step by step, of what has to be done to add one test.

8.1 Creating a test descriptor

The �le module list.h contains the array of test descriptors. A descriptor is a

structure containing :

� Short textual description of the test

� A structure Flag containing :

{ Flag Do we execute this test ? (�lled at con�guration time)

{ Number of hosts expected after the test

� The number of hosts needed before the test

� The status of the test

� A pointer to the master function

� A pointer to the slave function

Generally, the ag Do we execute the test ? is set to 1, since it always can be

modi�ed in the con�guration �le (see 3.1.2). The status of the test in this �le

has to be NOT YET PROCESSED, and it will be overwritten during the execution

of the test, depending on the result. The numbers of hosts can be any integer

number, ALL HOSTS or ALL ARCHS. ALL HOSTS means that the test requires all

the hosts of the con�guration �le. ALL ARCHS means that the test requires one

host of each architecture. The integer number can be greater than the real

13

number of hosts. In that case the test engine will duplicate some hosts for the

execution of the test.

For instance, we could add the test descriptor :

{"This is a new test",{1,ALL_HOSTS},0,NOT_YET_PROCESSED,

(short (*)())new_test, (short (*)())new_slave}

This test will begin with all the hosts in the virtual machine and should have

none left when it is completed.

8.2 Designing the test

Now, we have to write the master and the slave procedures. These two proce-

dures have to be placed in the �le test list.c and to be declared in the �le

test list.h.

The basic frame for the master is :

short new_test(array_of_index,length)

int *array_of_index;

int length;

{

.....

char *args[2];

char *test = "108";

args[0]=test;

args[1]=NULL;

......

pvm_spawn(TEST_SLAVE,args,..,...,...,..);

......

}

This may seem rather cryptic, without any explanation. The variable array of index

is an array of integers. Each integer is the rank of a host in the virtual machine.

This array is computed according to the number of required hosts for the test

and one integer can be more than once in the array. length is of course the

size of this array. The purpose of these two variable is to allow the designers

of tests to be aware of the resources they have to use in the tests. The next

step is to use the hostpool global variable. This is an array of host names. For

instance hostpool[array of index[2]] is the name of the third host in the

virtual machine during the test. Usually hostpool[array of index[0]] is the

name of the master host.

14

The second part concerns the "spawning" of the slave(s). In fact, the master

test spawns a generic slave, the name of which is SLAVE NAME. This slave, accord-

ing to the parameter args call the corresponding slave procedure (new slave).

The parameter passed to SLAVE NAME is the rank of the test, that is the rank of

the test descriptor in the �le module list.h. For instance here, 108 is the rank

of the new test descriptor, since there are 107 tests in the original test suite.

The slave is very simple :

void new_slave()

{

....

}

The best way to understand how all this works is to have a look at the

master and slave procedure of test #12 in test list.c. These procedures are

test12() and test12 slave().

8.3 Updating the NUMBER OF TESTS constant

The last step is now to edit the pvm test.h �le and to increase by one the

NUMBER OF TESTS constant. You can now run the tester and execute your new

test suite, provided that the new test is written correctly according to these

speci�cations !

9 Future work

� Updating of the tester for the next PVM release.

� Porting of the tester on more platforms.

10 Who to contact

Please send any bugs, questions and comments to casanova@cs.utk.edu and

mucci@cs.utk.edu.

15

Figure 1: The main window of pvm test gui

16

